The role of boundary and initial conditions for dynamical seasonal predictability
نویسنده
چکیده
The importance of initial state and boundary forcing for atmospheric predictability is explored on global to regional spatial scales and on daily to seasonal time scales. A general circulation model is used to conduct predictability experiments with different combinations of initial and boundary conditions. The experiments are verified under perfect model assumptions as well as against observational data. From initial conditions alone, there is significant instantaneous forecast skill out to 2 months. Different initial conditions show different predictability using the same kind of boundary forcing. Even on seasonal time scales, using observed atmospheric initial conditions leads to a substantial increase in overall skill, especially during periods with weak tropical forcing. The impact of boundary forcing on predictability is detectable after 10 days and leads to measurable instantaneous forecast skill at very long lead times. Over the Northern Hemisphere, it takes roughly 4 weeks for boundary conditions to reach the same effect on predictability as initial conditions. During events with strong tropical forcing, these time scales are somewhat shorter. Over the Southern Hemisphere, there is a strongly enhanced influence of initial conditions during summer. We conclude that the long term memory of initial conditions is important for seasonal forecasting.
منابع مشابه
CONTROL OF CHAOS IN A DRIVEN NON LINEAR DYNAMICAL SYSTEM
We present a numerical study of a one-dimensional version of the Burridge-Knopoff model [16] of N-site chain of spring-blocks with stick-slip dynamics. Our numerical analysis and computer simulations lead to a set of different results corresponding to different boundary conditions. It is shown that we can convert a chaotic behaviour system to a highly ordered and periodic behaviour by making on...
متن کاملNcep Dynamical Seasonal Forecast System 2000
JULY 2002 AMERICAN METEOROLOGICAL SOCIETY | I n April 2000, a new dynamical seasonal prediction system was introduced at the National Centers for Environmental Prediction (NCEP; the acronyms used in this paper are summarized in the appendix). The transition to the new system was hastened by a computer fire in September 1999 and subsequent changeover from a Cray C90 to an IBM-SP computer system....
متن کاملScaling relations in dynamical evolution of star clusters
We have carried out a series of small scale collisional N-body calculations of single-mass star clusters to investigate the dependence of the lifetime of star clusters on their initial parameters. Our models move through an external galaxy potential with a logarithmic density profile and they are limited by a cut-off radius. In order to find scaling relations between the lifetime of star cluste...
متن کاملExact Implementation of Multiple Initial Conditions in the DQ Solution of Higher-Order ODEs
The differential quadrature method (DQM) is one of the most elegant and useful approximate methods for solving initial and/or boundary value problems. It is easy to use and also straightforward to implement. However, the conventional DQM is well-known to have some difficulty in implementing multiple initial and/or boundary conditions at a given discrete point. To overcome this difficulty, this ...
متن کاملAdvanced Mathematical Methods to Study Atmospheric Dynamical Processes and Predictability
The summer school was organized by the Dynamical Processes and Predictability Working Group (PDP WG) of THORPEX1. THORPEX is a 10-year international research and development program to accelerate improvements in the accuracy of one-day to two-week high impact weather forecasts for the benefit of society, the economy and the environment. The PDP WG provides the connection between the operational...
متن کامل